Top

ESSLLI 2023 Course

on First-order Modal and Temporal Logics


July 31 - August 4, 2023

Last update: August 4, 2023, 17.00 CEST
Mail to V.Goranko

ESSLLI 2023

Lecturers: Valentin Goranko and Dmitry Shkatov

Course plan and schedule:

3

Lecture 1

Date 31/07/2023

Main Topics

Introduction to the course. Brief history and philosophical origins.

Technical introduction to first-order modal logics (FOML): languages, frames, and models.

Varying, increasing, decreasing, and constant domains. Formal semantics. Actualist and possibilist semantics.

Existence predicate. Reductions between actualist and possibilist semantics.

Recommended readings

Melvin Fitting, First order alethic modal logic, A Companion to Philosophical Logic, Blackwell, 2002, pp. 410--421

Melvin Fitting and Richard L. Mendelsohn, First-order modal logic, Kluwer, Synthese Library, 1998, Chapters 4, 6.

Torben Braüner and Silvio Ghilardi, First-order modal logic, Chapter 9 in: P. Blackburn & J. van Benthem (eds.), Handbook of Modal Logic. Elsevier (2007), pp. 550-564

Supplementary readings

George Hughes and Max Cresswell, A new introduction to modal logic, Routledge, 1996. Ch 13, pp 235-255; Ch 15, pp 274-287.

Sten Lindström & Krister Segerberg, Modal Logic and Philosophy, chapter 21 in: P. Blackburn & J. van Benthem (eds.), Handbook of Modal Logic. Elsevier (2007), Section 1: Alletic modal logic.

Slides on Lecture 1:

Slides on Lecture 1

Lecture 2

Date 01/08/2023

Main Topics

Axiomatic systems for first-order modal logics. Some completeness results.

Recommended readings

Dov Gabbay, Valentin Shehtman, and Dmitrij Skvortsov. Quantification in Nonclassical Logic , Elsevier, 2009. Chapter 6.

Supplementary readings

George Hughes and Max Cresswell, A new introduction to modal logic, Routledge, 1996. Ch 14, Ch 15.

Slides on Lecture 2:

Slides on Lecture 2

Lecture 3

Date 02/08/2023

Main Topics

Introduction to first-order temporal logics (FOTL).

Philosophical problems of the interaction of quantification with modality.
Equality, existence, necessitation, quantification de dicto and de re, definite descriptions, rigid designators.

Recommended readings

W. Quine, Three Grades of Modal Involvement, in: the Proceedings of the Xlth Intern. Congress of Philosophy, Brussels, 1953, Volume 14

Melvin Fitting, First order alethic modal logic, A Companion to Philosophical Logic, Blackwell, 2002, pp. 410--421

Melvin Fitting and Richard L. Mendelsohn, First-order modal logic, Kluwer, Synthese Library, 1998, Chapters 7,8, 11, 12.

Sten Lindström & Krister Segerberg, Modal Logic and Philosophy, chapter in: P. Blackburn & J. van Benthem (eds.), Handbook of Modal Logic. Elsevier (2007), Section 1: Alletic modal logic.

George Hughes and Max Cresswell, A new introduction to modal logic, Routledge, 1996. Ch 13, pp 235-255; Ch 15, pp 274-287.

Supplementary readings

R. Ballarin, Quine on intensional entities: Modality and quantification, truth and satisfaction, Journal of Applied Logic 10 (2012) 238–249.

Melvin Fitting, Barcan Both Ways, Journal of Applied Non-Classical Logics 9(2-3), 1999

Slides on Lecture 3:

Introduction to first-order temporal logics

Philosophical issues and problems in FOML and FOTL

Lecture 4

Date 03/08/2023

Main Topics

Undecidability, non-axiomatizabilty, and complexity of the decision problems for some important systems of FOML and FOTL.

Some decidable systems and fragments of FOML and FOTL.

Recommended readings

Saul Kripke, The Undecidability of Monadic Modal Quantification Theory, Zeitschrift für Matematische Logik und Grundlagen der Mathematik 8:113–116, 1962.

Roman Kontchakov, Agi Kurucz and Michael Zakharyaschev. Undecidability of first-order intuitionistic and modal logics with two variables. Bulletin of Symbolic Logic, 11(3):428-438, 2005.

Supplementary readings

Frank Wolter and Michael Zakharyaschev. Decidable Fragments of First-Order Modal Logics. Journal of Symbolic Logic, 66(3):1415-1438, 2001.

Mikhail Rybakov and Dmitry Shkatov. Undecidability of First-Order Modal and Intuitionistic Logics with Two Variables and One Monadic Predicate Letter. Studia Logica, 107(4):695–717, 2019.

Slides on Lecture 4:

Computational properties of 􏰀rst-order modal and temporal logics

Lecture 5

Date 04/08/2023

Main Topics

Variety of other formal semantics of FOML: counterpart semantics, metaframe semantics, generalised semantics.

Predicate abstractions for FOML.

Conclusion of the course.

Recommended readings

Melvin Fitting and Richard L. Mendelsohn, First-order modal logic, Kluwer, Synthese Library, 1998, Chapters 9, 10.

Francesco Belardinelli. Counterpart Semantics for Quantified Modal Logic, 2007.

Marcus Kracht, Oliver Kutz. Logically Possible Worlds and Counterpart Semantics for Modal Logic, Philosophy of Logic Handbook, 2007, Pages 943-995.

Melvin Fitting, Intensional Logic, Stanford Encyclopedia of Philosophy.

Supplementary readings

Torben Braüner and Silvio Ghilardi, First-order modal logic, Chapter 9 in: P. Blackburn & J. van Benthem (eds.), Handbook of Modal Logic. Elsevier (2007), pp. 607-613.

Giovanna Corsi. Counterpart Semantics. A Foundational study on Quantified Modal Logics, 2002.

Slides on Lecture 5:

Counterpart semantics

Predicate Abstractions

Generalisations of Kripke semantics

Additional readings

M. Cresswell, Rudolf Carnap: Modal Logic, Internet Encyclopedia of Philosophy

R. Carnap, Modalities and Quantification, J. of Symb. Logic, Vol. 11, Nr 2, 1946. (Available on Athena)

James Garson, Modal Logic, Stanford Encyclopedia of Philosophy.

Gary Hardegree, Introduction to Modal Logic, Ch.6,8,9,10

Melvin Fitting, Barcan Both Ways, Journal of Applied Non-Classical Logics, Vol. 9, Issue 2-3, 1999, pp. 329-344.

Ted Sider, Logic for Philosophy, OUP, 2010, (available from the SU library), Chapter 9.

Ed Zalta, Basic Concepts of Modal Logic, Lecture notes, CSLI, Stanford University, Chapter 6

Francesco Belardinelli, Counterpart Semantics for Quantified Modal Logic, 2007

Horacio Arló-Costa and Eric Pacuit, First-Order Classical Modal Logic, Studia Logica, 2006, 84(2):171-210

Nuel Belnap and Thomas Mueller, CIFOL: Case-Intensional First Order Logic (I). Toward a Theory of Sorts, J. Philos Logic (2014) 43:393–437

Queries

Mail to FOMTL2023