Henrik Ahlenius
Department of Philosophy
henrik.ahlenius@philosophy.su.se

ETHICS & RESEARCH
Session 2: recap

- Ethics arises from *choices*.
- What should we do? What’s important? What’s right, and what’s wrong?
- Some ways ethics may fail to be “objective”:
 - Based in emotions
 - Relative to culture / conventions
 - Not an area where any facts are to be found
Methodological suggestion: moderate objectivism

- Ethical views are open to criticism and revision in light of criticism.
- Some ethical positions are mutually inconsistent; hence disagreement is real.
- It is not rational to accept inconsistent positions; we should iron those out.
- We should evaluate ethical positions by their scope, intuitive appeal, consistency with other justified beliefs etc.
Today’s topics

- The value(s) of science
 - Research ethics: internal and external
 - What are the values (norms) of science? How can they be justified?
 - Of what value is science?

- Basic normative theories
What is research ethics?

- An academic discipline where ethical principles and rational argumentation is applied to questions concerning research and the research community.
- Laws and regulations concerning ethical conduct in research (including researchers legal obligations)
 - Swedish ethical review act
 - Nuremberg code
- Policies and guidelines concerning good scientific practice
- Critical reflection concerning laws and regulations.
Why a course like this?

- Tell you what the rules are
- Tell you to follow these rules
- Tell you to follow some other rules the teacher likes
- Get you to think critically and clearly about ethics in general and the ethics of research in particular
- Provide a guide to some of the available positions, and their merits and drawbacks.
What may make science (un)ethical?

- Relations between researchers
- Funding
- Human subjects
- Animal subjects
- Handling of the science (storage, publication etc)
- The consequences of research
The Tuskegee syphilis study (1932-72)
Tuskegee Syphilis Study

- Started in 1932, ended in 1972.
- Under the direction of U.S. Public Health Service.
- 600 men were enrolled, about 400 had Syphilis.
- They were observed, treated for “bad blood”.
- No information given about their infection.
- No treatment, even after penicillin was available.
Four principles of biomedical ethics

- Respect for autonomy
- Non-maleficence
- Beneficence
- Justice
The Vipeholm dental caries study

- In the years 1946–1951 dental researchers conducted a series of experiments at an asylum for mentally handicapped referred to as the Vipeholm institution, situated near Lund in southern Sweden.
- All who were able to cooperate were included in the dental studies, which was initiated by dental researchers and Swedish health care authorities (Medicinalstyrelsen); even chocolate and candy industries were involved as sponsors (they did not believe that candy caused caries).
- The research showed a correlation between the exposition of carbohydrate and the frequency of caries. As a consequence it was recommended that children should only be allowed to eat candy on Saturdays. The consequences of this action were that the problem of caries decreased significantly among the next generation of children.
Research ethics: two levels

- **Internal**
 - Concerns the goals “internal” to science, i.e. reducing ignorance, establishing truths, developing techniques and products.

- **External**
 - Concerns assessments “external” to the goals of science, i.e. general ethical concerns such as the treatment of research dual use, questions of allocation, priority etc.
Intra vs. Extra Scientific Evaluation

- A particular scientific endeavor might be in order from an intra-scientific point of view while at the same time questionable from an extra-scientific point of view.

- In other words: scientific work may be of sufficient quality while employing unacceptable means or towards immoral purposes.
Violations of internal standards typically compromise the findings of research.

Violations of external standards constitute moral transgressions in terms of rights, harms, injustices etc.
Three forms of scientific misconduct

- **Fabrication** — the invention of nonexisting data
- **Forgery** — faking diplomas, letters of recommendation, manipulating research material etc
- **Plagiarism** — the reproduction of someone else’s result or writings without due acknowledgment
 - Also: theft or destruction of data, biological material, original documents, etc.
What is the problem with misconduct in research?

- Threatens the reliability of research results
- Unjustly gives an advantage of some over others
- Threatens the general public’s trust in research – which in turn may have negative consequences for research
- Risk that research resources are wasted
- Might have negative impact on healthcare, engineering, policy decisions etc
Purpose and bad research

The intention of the researcher determines whether or not it is fraud; hence very hard to determine.

It goes against good scientific conduct not to abide by internal scientific rules, whether intentional or not; one should know about them.
Difficult to draw the line?

- Retouching/manipulation of images
- Intentional exclusion of data (outliers)
- Statistical treatment (manipulation?)
Modern research ethics

- The Nuremberg trials
 - Research subjects gravely mistreated
 - Nuremberg Code adopted in 1947 (Voluntary consent “absolutely essential”)

- The Manhattan project (USA’s a-bomb project)
 - Researchers’ responsibility for research results

Historically “progress by scandals” (Tuskegee)
Now “progress” by regulations and guidelines
- Research in Sweden on human subjects, living or dead, must have an ethics committee approval.
- Research using anonymous data, not linkable to specific individuals, not included.
- For further info and link to documents, visit: www.codex.vr.se
The Act concerning the Ethical Review of Research Involving Humans (SFS 2003:460) applies to situations such as research that involves physical encroachment on a subject or is conducted according to a method that aims to affect the subject physically or psychologically, as well as studies on biological material traceable to specific individuals. Research involving handling of sensitive personal data shall be examined regardless of whether research subjects give their informed consent or not. Research that clearly involves a risk of harming subjects, something that might happen also when conducting interviews or surveys for example, shall likewise be ethically examined. It is fundamental that research only be approved if it can be conducted with respect for human dignity and if human rights and fundamental freedoms are constantly heeded. A person's welfare should be prioritized over the needs of society and science.
Research ethical review

Sufficient scientific standard?

→ YES

Absence of absolute restrictions?

→ N
→ O

Balance of benefits and costs/risks to the advantage of the study?

→ YES

Application (study) approved

Application denied = study is stopped
Consider a historian studying the circumstances surrounding the deportation of Hungarian Jews to the Nazi extermination camps during WW2. She is at this point the only one with access to two recently opened archives in Budapest. Before too long, many others will start studying what’s in these Budapest archives, but as of now she is the only one with access. She has already noticed that a significant number of Jews were cooperating with the communist groups loyal to the Soviet regime. These findings are scientifically interesting, and publishing them would mean a career boost for her. But she hesitates because of a fear that the findings will be used by Jobbik’s anti-Semitic rhetoric, which in turn may once again jeopardize the life and safety of the Jewish minority in Hungary.

Should she publish her findings regardless of these risks? Or should she refrain, perhaps even bury the results so that no one else will publish them either?
12 Norms of Research (Resnik)

- **Honesty**: Scientists should not fabricate, falsify, or misrepresent data or results. They should be objective, unbiased, and truthful in all aspects of the research process.

- **Carefulness**: Scientists should avoid errors in research, especially in presenting results. They should minimize experimental, methodological, and human errors and avoid self-deception, bias, and conflicts of interest.

- **Openness**: Scientists should share data, results, methods, ideas, techniques, and tools. They should allow other scientists to review their work and be open to criticism and new ideas.

- **Freedom**: Scientists should be free to conduct research on any problem or hypothesis. They should be allowed to pursue new ideas and criticize old ones.
- **Credit**: Credit should be given where credit is due but not where it is not due.

- **Education**: Scientists should educate prospective scientists and insure that they learn how to conduct good science. Scientists should educate and inform the public about science.

- **Social Responsibility**: Scientists should avoid causing harms to society and they should attempt to produce social benefits. Scientists should be responsible for the consequences of their research and they should inform the public about those consequences.

- **Legality**: In the process of research, scientists should obey the laws pertaining to their work.
- **Opportunity**: Scientists should not be unfairly denied the opportunity to use scientific resources or advance in the scientific profession.

- **Mutual Respect**: Scientists should treat colleagues with respect.

- **Efficiency**: Scientists should use resources efficiently.

- **Respect for Subjects**: Scientists should not violate rights or dignity when using human subjects in experiments. Scientists should treat non-human animal subjects with appropriate respect and care when using them in experiments.
- **Freedom**: Scientists should be free to conduct research on any problem or hypothesis. They should be allowed to pursue new ideas and criticize old ones.

- **Social Responsibility**: Scientists should avoid causing harms to society and they should attempt to produce social benefits. Scientists should be responsible for the consequences of their research and they should inform the public about those consequences.
But another part of me wonders whether research on race and intelligence—given the persistence of racism in the U.S. and elsewhere—should simply be banned. I don't say this lightly. For the most part, I am a hard-core defender of freedom of speech and science. But research on race and intelligence—no matter what its conclusions are—seems to me to have no redeeming value.

Evaluating the norms

- How can the norms be evaluated?
- From within science: adherence to the norms furthers the goals of science
- From outside of science, from moral considerations
Norms as instruments for advancing the goals of science

- Achieving new knowledge
- Reducing ignorance
- Solving practical problems
Moral evaluations

- There are moral reasons why these norm are justified; acceptance of them is important not just because we would otherwise not achieve the internal goals of science.
- But what are the moral reasons?
Three approaches to ethics

- Outcomes
 - Utilitarianism

- Action types
 - Deontological ethics
 - Sanctity of Life
 - Rights

- Agent-centered
 - Virtues and motives of the agent
What makes actions right or wrong?

- Character and intentions of the agent
- Act type
- Value of the consequences
- Rights violations
- Primary source of moral evaluation
It’s about the Consequences: Utilitarianism

- British 18th century Enlightenment.
- A reaction to traditional ways of thinking in religious, moral and political contexts.
- A plea for equality (“each to count for one, no one for more than one”).
- A plea for secularism (moral and political decisions ought not to be based on religious doctrines).
- A plea for a more humane treatment of prisoners, animals, mental patients etc (individuals whose interests had been disregarded).
Moral behavior amounts to *promoting* something *valuable*.

An action is right if it leads to more value being realized than any other possible alternative the agent could have chosen.

Many ideas of what is “valuable”. For instance preference satisfaction or subjective well-being (‘utility’).
The Building Blocks of Utilitarianism

- Consequences
- Utility
- Impartiality
 - The effects of our actions on the well-being of sentient creatures.
What could be wrong with *that*?

- Sounds pretty self-evident: ethical concerns are about promoting well-being.
- Many controversial features…
 - No partiality
 - No upper limit (maximizing)
 - No act-types are wrong in themselves.
 - No method of measuring utility
Deontology

- Deontologist deny that the rightness or wrongness of actions is determined solely by the goodness of their consequences.
- There are further moral factors that determine the rightness or the wrongness of an act. These factors generate *moral constraints*.
- **Avoiding harm**. A prohibition on performing certain types of acts even if they would lead to the best consequences if they involve causing harm to others.

- **Rights**. Persons are the bearers of rights which protect their central interests and determine what is morally owed to them (claims and entitlements).

- **Treating others merely as means**. You ought not to use others as tools to some goal that do not serve their interests, at least not without their consent.
Moral Rights

- Moral rights are legitimate demands on others.
- Such demands may take different forms, corresponding to *negative* and *positive* rights.
- Right to life, freedom of speech
- Right to basic education.
- Negative rights are claims on everyone in general; positive rights are claims on someone in particular.
- What rights are only negative and what rights are both negative and positive is what political discussion is often about.
Utilitarianism and Rights

- According to utilitarianism, rights are political constructs, not “moral discoveries”.
- It is probably a good thing for a society to institutionalize some claims as “rights”, but the ultimate justification for these institutions is always pragmatic.
- Overlapping consensus, in moral theory and in politics.
Virtue ethics

- Focuses on persons and their character traits, rather than on acts and behavior.
- What sort of person should I be?
- What would a just, empathetic, courageous person do in these circumstances?
What is a virtue?

- A virtue is a trait of character, manifested in habitual action, that it is good for a person to have.

benevolence industriousness honesty
compassion loyalty moderation
self-confidence self-discipline cooperativeness
courage dependability fairness
friendliness generosity tolerance
thoughtfulness conscientiousness
- Not possible to give a precise account of what is the right thing to do in general terms.
- Ethical conduct is like a sort of social sensitivity of what the circumstances demand in the particular context.
Moral evaluations:

- Utilitarianism: the norms have no independent authority but institutionalizing and promoting adherence to them ultimately further our quality of life. In adjudicating conflicts this is the overarching goal.
Deontology: (some of) the norms have an independent authority not reducible to how useful they are. Conflicts arise only if we do not properly rank the relative importance of the norms.
Virtue ethics: the norms have an independent authority not reducible to how useful they are. The morally wise person will perceive the relative importance of the norms given the situational variables present in the individual case.
The Milgram obedience experiments
Case: putting utilitarianism to the test

- The Milgram study on obedience to authority.
- Participants thought they were partaking as assistants to the Experimentor in administering a memory test.
- In reality, *they* were studied: how obedient would they be?
- Obedience = subjecting the “learner” to electrical shocks of ever more intensity.
In studying ordinary individuals’ propensity for obedience to authority, Milgram deceived the participants concerning the true nature of the study and the role of the participant.

- There was no *informed consent*.
- The participants were often extremely stressed by the experiment; they also learned some discomforting things about themselves.
- Was the experiment morally acceptable?
Values in and of the hard and soft sciences

- Ethical questions relating to fields such as physics, chemistry or medicine often focus on possible harms, either in application or to research subjects.
- Ethical issues relating to the humanities seldom focus on possible harms, but rather lack of usefulness.
- Why fund, study and teach Egyptology, medieval philosophy, modern literature?
From The Swedish Research Council:

- Scientific knowledge has a value not only as an instrument, in other words as a means of achieving something else we value. Knowledge is also worth something in its own right – has its own value – regardless of how it might be used.

Good Research Practice, p. 19 (2017)
Intrinsic (or final) value vs extrinsic (or instrumental) value.

- Intrinsic: valuable in itself
- Extrinsic / instrumental: valuable as a means

Complexification